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 INTERNATIONAL ECONOMIC REVIEW
 Vol. 38, No. 1, February 1997

 PRODUCT INNOVATION AND THE BUSINESS CYCLE*

 BY BOYAN JOVANOVIC AND SAUL LACH'

 University of Pennsylvania, U.S.A.
 The Hebrew University, Israel, the Federal Reserve Board and

 the National Bureau of Economic Research, U.S.A.

 Microeconomic data show two important facts about new products. First,
 some products are more important than others. And second, it takes them
 years to penetrate the market significantly. Our calibrated model with these
 features overpredicts the autocovariance of U.S. GNP at long lags, but under-
 predicts it at short lags. The latter is not surprising, since the model leaves out

 other obvious high-frequency shocks. The puzzle is why the U.S. GNP data do
 not show stronger autocorrelation at higher lags. A surprising finding is that
 while the speed of diffusion has huge level effects, it plays a minor role in
 shaping the business cycle.

 1. INTRODUCTION

 To implement new technology, a producer must usually buy some equipment that
 embodies it. This suggests that a technology shock will induce a new type of
 equipment, a new capital good. Indeed, one can distinguish technology shocks by

 the different capital goods that they may give rise to: The vintage of the capital good
 then reveals the date the technology shock occurs, and the subsequent sales of the
 capital good reveal how "big" the technology shock was.

 L.A. Two Questions: We focus on two questions. The first is: How important
 is product innovation in shaping the business cycle? When calibrated to some micro
 U.S. data on new products, our model generates about one quarter of the variance
 of GNP around trend. This finding matches that of Greenwood, Hercowitz, and
 Krusell (1994), who use a very different model and methodology, and come up with
 a number of twenty percent.

 The second question is: If product innovations do indeed cause aggregate fluctua-

 tions, then at what frequencies do they do so? We answer this question by
 comparing the autocovariances of U.S. per-capita GNP at various lags to the
 autocovariances predicted by the model. The fluctuations implied by the model turn

 * Manuscript received December 1994; revised December 1995.
 1 We thank the C.V. Starr Center for Applied Economics at New York University, U.S.A. for

 technical and financial help, Michael Gort for providing the data, Frank Diebold, Doug Dwyer,
 Jordi Gali, Jeremy Greenwood, Zvi Griliches, Arnulf Grubler, Jinyong Hahn, Zvi Hercowitz, Pete
 Klenow, and Paul Romer for comments, and Ray Atje and Ken Rogoza for research assistance. This
 paper presents the authors' own views and not those of the Federal Reserve System.
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 4 JOVANOVIC AND LACH

 out to be too sluggish; the long-lag autocovariances are overpredicted, mainly
 because of the longevity of products. On the other hand, the short lag autocovari-

 ances are underpredicted, probably because other shocks are left out. Surprisingly,

 the speed of diffusion turns out to have little bearing on the character of fluctua-

 tions, at least as summarized by the autocovariance function.

 1.B. Methodology: We ask how much of the business cycle can one explain

 with a particular type of technology shock. We use the "vintage capital" idea

 (Johansen 1959, Salter 1960, and Solow 1959) that equipment is largely technology-
 specific. If this is correct, a technology shock can be measured, and its effects over

 time can be traced, by looking at what happens to the equipment that embodies the
 technology in question. We take the variation in quality of new products and their
 speed of diffusion as exogenous and then predict the autocovariance structure of

 GDP. We then compare it with what is observed using the metric of the autocovari-
 ance function. To do this, we need to use micro-evidence to justify our assumptions

 about the key parameters-how variable the quality of innovation is, how fast it

 spreads, and so on. We therefore look at the evolution of the twenty or so capital

 goods included in the Gort-Klepper (1982) sample. We then add these effects by
 assuming an aggregate production function of the kind that Romer (1987) and other
 growth theorists have proposed. In this production function, output depends on a

 weighted sum of capital goods. We then assume that the number of these capital
 goods increases over time.

 1.C. Other Approaches to Technology and the Business Cycle: There are three
 other approaches to the same question. The first is the Real Business Cycle

 approach (Prescott 1986). It uses a model shocked by a first-order autoregressive
 technology process and, with just a handful of parameters, manages to produce

 realistic-looking cycles. A drawback of the approach, however, is that it does not

 measure the technology shock directly. Instead, it treats technology as a residual-an

 unobservable. It does not use micro data on technology in order to determine their

 size and the frequency of shocks.
 In the second approach, Greenwood, Hercowitz and Krusell (1994) measure

 investment-specific technological change by looking at the price of capital goods

 relative to that of consumption goods, a series constructed by Gordon (1990). They

 report a correlation between the Hodrick-Prescott detrended relative price series

 and equipment-investment series of - 0.46. When they simulate their model using a

 shock with the properties of the detrended relative price, they can explain only

 about 20 percent of the variation in output. Our own simulations use information
 from entirely different micro data, and yet we shall reach a similar quantitative

 conclusion. Of course, the relative price of capital goods can change for reasons
 other than technology shocks, so its unclear how much of the covariation between

 the price series and aggregate activity actually is caused by movements in technol-
 ogy.2

 0 2

 2A difficulty with the Gordon price series is that it falls so fast during the 70s and 80s that it
 implies tremendous technological regress in the consumption goods sector over the same period.
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 INNOVATION AND CYCLES 5

 The third approach, like the second, also tries to measure technology directly. It
 focuses on innovation "counts," thereby pursuing Schumpeter's suggestion that

 business cycles are driven by a bunching of innovations. Kleinknecht (1987) studies
 aggregate patent statistics which do fluctuate substantially. Klenow (1994) looks at
 advertisements of new products, and finds them to be mildly procyclical. Geroski
 and Walters (1995) look at an innovation "count" measure for the U.K., and find
 that this measure is procyclical, as are patents. A problem with this approach is that
 the economic value of patents and "inventions" may itself change in such a way as to
 offset, at least in part, the effect that fluctuations in their number have on

 aggregates. Still, this approach is complementary to, and easily combined, with ours.

 1.D. Our Modeling Approach: We do not try to explain how new products are
 invented, or why they differ in quality; presumably there is some randomness in the
 invention process-a process that is still largely a black box in theoretical work. But

 the diffusion of inventions has been much analyzed. The origins of diffusion lags
 have been primarily linked to vintage physical capital (originally Johansen 1960,
 Salter 1960, Solow 1959, extended to a cyclical context by Caballero and Hammour
 1994, and by Bouccekine et al. 1995). But they also have been linked to vintage
 human capital (Chari and Hopenhayn, 1991), to lack of awareness (Griliches 1957,
 Jovanovic and MacDonald, 1994), to second-mover advantages (Jovanovic and Lach,
 1989), and to the profitability of the inventions (Griliches 1957, Jovanovic and Rob
 1990).

 We do not build a structural model along any of these lines. Rather, we assume a
 steady arrival of innovations, in the form of intermediate products. Each generation

 of products is of different average quality. The randomness of the quality of each

 vintage produces aggregate fluctuations. We postulate a particular outcome for the
 diffusion curve for new inventions, which presumably are the most important
 component of technology shocks. The shock to technology we focus on is the
 invention of new products, some of which are intermediate goods and can therefore
 be interpreted as shocks to the production function for final goods. Microeconomic
 data tell us how fast these products spread after they are invented. From this we

 infer how much the recurring invention of new products contributes to fluctuations
 of aggregate output.

 i.E. Summary of Results: We find that neither symmetry of products nor their
 instantaneous diffusion are good approximations to reality. First, new products

 differ greatly in importance: The coefficient of variation of the distribution of
 quality over products is estimated at 0.56. And second, if there is something that one
 can call "eventual market penetration" of a product, the typical product approaches

 this value very slowly-at the rate of 8.1% per year. The diffusion of new products
 is, in other words, quite slow.

 Given these estimates, we ask how much of the fluctuation in U.S. per-capita
 GNP stems from this type of shock. In our model, the exact nature of the
 persistence of the effects on output of the technology shock depends on the speed of
 diffusion and on the degree of persistence in how new products evolve. We find that
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 6 JOVANOVIC AND LACH

 since new products stay around for a long time, the shock explains (indeed it
 overpredicts) the long lag autocovariance component of the business cycle. The
 shock, however, does not generate large enough autocovariances at short lags. A
 really great new product like the computer will eventually raise output by a lot once
 it is in widespread use. But by the time it has spread, newer products will have
 appeared on the scene; the cumulative effect of these shocks is therefore a
 combination of many independent influences, and these are subjected to too much
 averaging to have an aggregate impact at high frequencies. In sum, the invention of
 new products can explain only relatively slow variation in aggregates. Indeed, when
 its parameters are estimated from micro data, the model substantially overpredicts
 the long-term autocovariance of de-trended GNP. The underprediction of short-lag
 autocovariances was expected-there are shocks that the model leaves out: policy
 shocks, legal shocks, shocks to import prices, shocks to management techniques, and
 so on. They presumably can account for the discrepancy between our model and the

 data at high frequencies. More puzzling, however, is the model's substantial overpre-
 diction of the longer-term autocovariances. This overprediction stems from two
 clear properties of the macroeconomic data: new products evolve in a persistent
 manner, and the intergenerational variation in the quality of new products is
 substantial. Surprisingly, the rate of diffusion of new products plays a negligible role
 in what the model predicts for both amplitude and persistence of the business cycle.
 This challenges Schumpeter's view that a business cycle is a wave whose shape
 depends on the pattern of diffusion.

 All this notwithstanding, we do find an effect of the speed of diffusion on the level
 of output, and the effect is big. A society in which technologies spread quickly will
 be far more developed than another in which technologies spread slowly.

 1.F. General Purpose Technologies: We have not assumed any qualitative
 difference between the technologies-some are bigger than others, and there is a
 continuum of types. An alternative view is that there are two essentially different
 types of technological innovations. Most innovations are small, but occasionally we
 see what Bresnahan and Trajtenberg (1995) have called "general purpose technolo-
 gies" (GPTs). Their diffusion speed matters because they interact directly with other
 technologies. Models that use this as a centerpiece are Jovanovic and Rob (1990),
 Andolfatto and MacDonald (1994), and Lippi and Reichlin (1994). The logic is that
 if there are big shocks that hit the economy once every few years, then diffusion lags
 must surely matter. The trouble with this view is that in fact, such big technologies
 take far too long to spread-much longer than the length of the typical business
 cycle. For example, the time from 10% to 90% diffusion of the railway was 54 years
 in the U.S.A., and 37 years in the U.S.S.R., and of the steam locomotive (a much
 smaller invention) 12 years in the U.S.A., and 13 years in the U.S.S.R (Griibler 1991,
 Table 1). Such long delays are found in a whole host of other inventions (GrUbler
 1991, p. 177), and in the Gort-Klepper sample that we study here.

 1.G. What Next?: The contrasting views of the technology shock are mainly
 differences in emphasis. One can view cycles as the result of the occasional arrivals
 of GPTs and their subsequent spanning of application sectors. Or one can view
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 INNOVATION AND CYCLES 7

 growth as the result of the continuous arrival of symmetric innovations-some big,
 some small-and their subsequent improvements. Far from ruling out GPTs, we
 instead assume that they will recur with some statistical regularity. Similarly, one
 can view cycles as the result of a "bunching" of innovations; here more important
 products are the embodiment of a larger number of innovations, so that, for
 example, the computer embodies a large "bunch" of smaller innovations. Indeed, if
 every once in a while, some truly discrete changes do happen, such as the informa-
 tion technology revolution, our approach, and that of Greenwood et al. and Klenow
 ought to work. For instance, the Greenwood et al. approach to accounting for
 technical change should work if the investment deflator is correctly calculated to
 include all investment-specific technological changes, large and small. The Klenow
 "counting" approach will work if GPTs are associated with a wave of patents, or a
 wave of product introductions. And our approach should work if the sample of
 products is representative, and if a product's sales are proportional to its contribu-
 tion to the aggregate production function.

 Done correctly, these different approaches to accounting for the business cycle
 with technology shocks will reveal a stream of arrivals of new technologies, fluctuat-
 ing in number and in quality. To be truly convincing, this literature will need to
 trace through the effects of various technological changes on the economy at large.
 Griibler and his coworkers are trying to do just this, with different tools than we
 have used here. We have added to this effort, but much more needs to be done to
 answer the essential question, which is: which technological developments caused
 which business cycles? A logical next step is to look at some sectorial and industry-
 of-use indicators (such as inventory, investment, and productivity), and try to
 organize the results in a way that aggregates to yield macroeconomic implications.3

 1.H. Plan of the Paper: Section 2 presents the model. In order to get as
 quickly as possible to the crux of the matter, we describe the model's business cycle
 implications in Section 3. Section 4 then describes how the macroeconomic data
 were used to generate the parameter values that underlie the exercise in the
 previous section. Section 5 presents a discussion of the results, and Section 6
 concludes the paper. Technical details appear in the Appendix.

 2. THE MODEL

 2.A. The Production Function: Assume the following aggregate production
 function:

 (Y, = L( - c) tq a, di.

 Here Lt is the labor input, qi, is the quantity of the ith intermediate input, and A,
 is the number of intermediate inputs available at t. In this additive specification, no

 3 There is also a literature that tries to generate unpredictable fluctuations with no aggregate
 shocks at all-see Jovanovic (1987), and Scheinkman and Woodford (1994).
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 8 JOVANOVIC AND LACH

 intermediate product is essential. An obvious alternative to (1) is a multiplicative

 specification, analyzed in Jovanovic and Rob (1990), but that is less plausible in that

 it says that each input is essential.

 2.B. The Diffusion of Intermediate Inputs: Let v(i) denote the vintage (i.e.,

 date of birth) of product i. We shall make the following three assumptions about the

 diffusion of the qi:

 A.1. (No scale effects): Its diffusion by date t is proportional to Lt.
 A.2. Its diffusion depends on its age, t - v(i).
 A.3. Its diffusion depends on shocks described by the stochastic process

 { ov(i), t}t=v(iy
 These shocks reflect inventions that "refine" the "basic" invention of
 product i.

 These assumptions imply that

 (2) qi t = LtF[t-v(i), 00(i) t

 so that

 y JA[F a
 (3) y -F(t v(i), OU(i),t)] di

 Now suppose that At grows exogenously at the rate A, and normalize AO to equal
 unity. Then At = eAt. There is only one product per vintage; only product i arrives
 exactly at date v(i). Changing the variable of integration from the product name i to
 its vintage v, where i = e Au, yields,

 (4) Yt = At e'v[F(t- v, O t)I dv =Ae |feA`[F(r, ft_ t)a dr = e AtXt
 -0

 where

 00 Xt =A| e [F (, otTt]dab

 Equation (4) is intuitive: There are AeA(t-T) products of age r, and each contributes

 F(r, Ot-.)* We then just add over all ages.

 2.C. Three Assumptions on the Shocks: To keep the model manageable, we
 make the following assumptions about the product-innovation shocks:

 A.4. (Independent shock sequences on different vintage products): If

 v = v', {Ot}tr(i) is independent of outt~t=U/(i)
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 INNOVATION AND CYCLES 9

 A.5. (Autocorrelated shocks within a vintage): For given v, Ov,, follows the
 law of motion log(6v O+v ) = p log(O.,) + uU t +1 with uv t i.i.d. over v
 and t, with zero mean and variance o-,j . We assume that I P I < 1.

 A.6. For each v, 0, is drawn independently from the stationary distribu-
 tion of the above process-the distribution implied by the represen-

 tation log(O) = ES 30u ,j, -i

 3. THE NATURE OF THE BUSINESS CYCLE

 We are now in a position to derive some implications for the business cycle

 3.A. Per Capita GNP is Trend-stationary: This implication does not depend
 on the functional form of F(.). We state it formally:

 PROPOSITION 1. If F is bounded, logyt is stationary around the trend A.

 PROOF. In view of A.5, X is a moving average of a stationary variable, and so it
 too must be stationary. El

 The long-run growth rate of income is A; diffusion lags therefore have only level
 effects in the long run.

 Trend stationary processes can be highly persistent, and our model will provide an
 example of this. As such it will resemble a model where the trend is stochastic. A
 recent paper by Diebold and Senhadji (unpublished data, 1995) uses long spans of
 annual data (1875-1993) to argue that trend-stationarity is the appropriate formula-
 tion. But the debate about the properties of the time series of aggregates will no
 doubt continue.

 3.B. A Specific Form for F: We seek a parsimonious, yet flexible form.
 Assume that

 (5) [F(r, 0)] = (1 - ePT)O

 The parameter p measures the speed of diffusion-it is the same for each product.4
 The parameter 0 now captures (through a slight abuse of notation) two things: the
 quality of the product (the original definition of 0), as well as its demand in
 production, as originally measured by a. This interpretation allows for the possibil-

 ity that variations in sales may reflect production technology downstream rather

 than the intrinsic quality of the new product. Eq. (4) then implies

 (6) Xt= A e At(1 - e )0t-,t dr.

 4We show that this parameter has surprisingly little effect on the business cycle. Allowing it to
 differ over products would make little difference to the model's implications.
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 10 JOVANOVIC AND LACH

 3.C. The Level Effects of the Speed of Diffusion: Although p has no growth-
 rate effects, its level effects can be very large. Let ut- E(O) be the unconditional
 mean of the {0} process. The level effect of the diffusion rate p can be measured by

 the long-run mean of X,:

 (7) E(Xt) = p+A

 So while the speed of diffusion does not affect the growth rate, it has a potentially
 huge level effect. This message should not be lost when we later conclude that the

 speed of diffusion has relatively little bearing on the nature of the business cycle.

 3.D. The Autocovariances, Autocorrelations, and Impulse Responses: Ap-
 pendix Section A shows that for each k 2 0,

 (8) Ck Cov[log(Xt),log(Xt+k)] 2(A P) p e 1 + A(1 Pe ) j

 where f, 2 =Var[log(O)] is the unconditional variance of {log(O)}. Since log Xt
 equals detrended log yt, this is the predicted autocovariance function for de-trended
 log per capita output. The amplitude of the business cycle is just the variance of

 log(Xt):

 2(A + p)A

 C? 2(2A+p)

 The autocorrelation coefficient of log(Xt) is rk Ck/CO:

 (9) rk = Pke Ak[l + A(], epk)

 The impulse response of invention shocks: If a high-quality basic invention is made

 at date t, this is represented by a high value of Qt to which will, by A.5. be correlated
 with Ot, t+k since dE(Ot, t+k)/dOt t = pk. Now in equation (6), the weight on Ot, t+k is
 Ae-Ak(l - e Pk). So the response of Yt+k to a unit increase in Ot t is:

 (10) Ik = Apjoke-Ak(1-e-pk)

 The function Ik is unimodal, and peaks at lag k* given by
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 INNOVATION AND CYCLES 11

 where, of course, log( ,3) < 0. We summarize the properties of Ck, rk, Ik and k* as
 follows:

 PROPOSITION 2.

 (i) Ck is increasing in /3, and it rotates clockwise when A, or p rise.
 (ii) rk is increasing in /3, and decreasing in A and p.
 (iii) Ik is increasing in ,3 and p, and it rotates clockwise when A rises,
 (iv) k* is increasing in /3, and decreasing in A, and p.

 PROOF. In Appendix Section B.

 3.E. Our Empirical Strategy: We shall plot Ik and Ck (rk is just a re-scaled

 version of Cd), evaluated at the estimates for A, p, /3, and qf. Our strategy will be to
 estimate the parameters from macroeconomic data, and then see how well the model
 explains the GNP data. In the tradition of real business-cycle analysis, we shall ask
 how well the predicted second moments match the second moments in the data.

 That is, we shall compare Ck to the autocovariance of de-trended per-capita real
 GNP.

 We focus on the autocovariances in (8) and not the autocorrelations in (9)
 because the model omits noise that is in fact present in the yt series, noise that
 might be autocorrelated at short lags only. Such noise, when added to the model,
 could affect rk at all lags, raising it for low k and reducing it for large k. On the

 other hand, such noise affects the autocovariances only up to whatever length
 defines their high-frequency character. That is to say, if the omitted noise is AL4(q),
 then only the first q autocovariances are affected. Indeed this is why the model will
 underpredict the empirical autocorrelation for low k.

 Our approach is in the calibration tradition of business cycle research, but we do
 depart from it in that we actually estimate some of the parameters from nontradi-
 tional macroeconomic data. Our method is relatively straightforward, however, and
 there are more sophisticated alternatives. Our estimation does not take into account
 the aggregate model and data. In contrast, Diebold et al. (1995) present a more
 ambitious approach where, among other things, one can in principle estimate such
 parameters by seeking the estimates that minimize the divergence between the
 aggregate data and model. More specifically, their framework delivers the parame-
 ter configuration that minimizes divergence between the data spectrum and the
 model spectrum over frequencies of interest.

 3.F. The Parameter Estimates: We move on to a summary of how well the
 model does in explaining the autocovariance function of per capita GNP. The
 parameter estimates are: p = 0.081, /3 = 0.975, q2 = 0.31, and oq2 = 0.015. How they
 were estimated is described in (the next) Section 4, where standard errors and
 sources are provided and discussed. We now present plots of Ik (in Figure 1) and Ck
 (in Figure 2) based on these estimates. The striking feature of Figure 1 is the length
 of time that it takes the impulse response to peak (3 years) and to die out.5

 5It takes even longer (5 years) for the patent-citations impulse responses to peak (Jaffe and
 Trajtenberg, unpublished data, 1995].
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 12 JOVANOVIC AND LACH
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 INNOVATION AND CYCLES 13

 Figure 2 depicts the actual autocovariances with the predicted ones, and the 1.96
 standard-deviation bands around them (for discussion of the technicalities see
 Section 4)*6 For short lags, the model underpredicts the autocovariance, which
 makes sense because other shocks are omitted. For long lags, the model overpre-
 dicts the autocovariance, although not significantly. The reason is the estimate
 ,8 = 0.975; there is extremely high persistence in log(O) within products, and in spite
 of the independence of shocks across products, this is enough to yield a lot of
 persistence.

 What conclusions can we draw? We divide the issues into two sets: the first has to

 do with the amplitude of the business cycle, as measured by C0, and the second has
 to do with the slope of the autocovariance.

 3.G. The Amplitude of the Business Cycle: We make three points. First,
 shocks to product innovation explain about one quarter of the variance of GNP
 around trend. Given that there surely are shocks that the model leaves out, this is
 not bad.

 Second, the amplitude of the predicted business cycles is largely independent of
 the rate of diffusion p:

 (12) C0 _A
 (12) 8p (A + p)(2A + p)C [0024]Co,

 where the second equality obtains after substituting in the estimated values of A and
 p. Hence the elasticity of C0 with respect to p is roughly [0.024] p, which is about
 one fifth of one percent!

 Third, we estimate that C0 = [0.0831 qF2, which means that the predicted variance
 of log GNP around trend is about 120 times smaller than the variance of the log of
 the technology shock of each individual invention.

 3.H. The Slope of the Autocovariance Function: We make two points. First,
 the model predicts a much flatter Ck than the data show. Since other shocks are
 probably present in the data, the underprediction of the short lag autocorrelations is
 to be expected. But the overprediction of Ck at longer lags is a problem for the
 model. The problem would be "solved" if we could somehow raise our estimate of A

 6 The confidence interval around the actual autocovariance does not appear to increase with the
 lag length k, as one might expect, given that the number of observations used in the estimation of
 each autocovariance decreases with k. This is due to our use of a biased autocovariance estimator.
 This estimator divides the sum of (N - k) cross-products by N, rather than N - k, where N is the
 number of observations. It is therefore biased but it usually has a lower mean squared error than the
 unbiased estimator (Priestley 1981, p. 323). It turns out that the exact variance of the biased
 estimator does not have to increase with k. Because the variance of the unbiased estimator is
 (N/(N - k))2 times higher than the variance of the biased estimator, its variance (as expected) is
 more likely to be an increasing function of k.
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 14 JOVANOVIC AND LACH

 or lower our estimate of 83. Raising A would make the absolute impact of a shock to
 0 fade faster relative to y, and lowering 83 would shorten the duration of the
 impulse effects of a shock (see Proposition 2.iii, and Figure 1).

 Second, the flatness of Ck is not due to slow diffusion. Although Proposition 2.i
 says that a higher p makes Ck steeper, quantitatively the effect is small. Indeed,
 suppose that all products diffused instantaneously, so that p -0, and so that

 (13) Ck = ( q2/2) Ae-Akpk.

 The intercept, C0, would still be only 0.0026, which still underpredicts amplitude by
 a factor of four. And the model would still continue to substantially overpredict
 persistence at longer lags.

 4. ESTIMATION

 We present a more detailed discussion of our data sources and procedures, and
 make some remarks qualifying our parameter estimates.

 4.A. The Gort-Kiepper Data: The parameters p, 13 and qi were estimated
 from the Gort-Klepper data. These data document the historical development of 46
 products in terms of their sales, price, output, and numbers of producers over (part
 of) the life-cycle of each product. Gort and Klepper chose the products on the basis
 of the following three criteria:

 1. To allow sufficient diversity by including consumer, industrial, and
 military products,

 2. To include only products that were "basic" inventions,
 3. To include products with adequate data on net entry.

 We shall later discuss how these selection criteria may affect our results.
 Table 1 lists the 21 products for which we have sales data. Only 11 or so of them

 seem to qualify as intermediate inputs. For example, there is no output in GNP that
 corresponds to the use of missiles, penicillin, DDT, blankets, and shavers. But
 because the number of products is small, we analyze them all. Column 1 of Table 1
 tells us when each product was introduced into the market. There are old products
 such as records, dating from 1887, as well as relatively new ones such as lasers,
 which became available in 1960. The last year for which data were collected was
 1972 and, in general, sales and quantity of output figures were available for only a
 part of the product's life. The age range for which there are data appears in the
 second column, and the average volume of sales per product in the third. Sales,
 averaged over the 499 observations in the sample, were 580 million U.S. (1967)
 dollars.

 4.B. Procedure: The production function in eq. (1) treats intermediate prod-
 ucts as exchangeable inputs: One unit of product i and two units of product j can
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 INNOVATION AND CYCLES 15

 TABLE 1

 THE GORT-KLEPPER PRODUCTS

 Product Initial Year Age Range Salesa Sample Size

 1. Computers 1935 20-36 8567.6 17
 2. Crystals 1936 25-36 45.6 12
 3. DDT 1943 1-27 23.3 27
 4. Electrocardiographs 1914 47-58 8.8 12
 5. Electric Blankets 1911 35-61 61.5 27
 6. Electric Shavers 1930 1-42 83 39
 7. Fluorescent Lamps 1938 0-34 94.6 35
 8. Freezers, Home & Farm 1929 18-43 335 26
 9. Gyroscopes 1911 52-61 15.1 10
 10. Lasers 1960 3-11 41.9 9
 11. Missiles, Guided 1942 9-30 2150.8 22
 12. Motors, Outboard 1908 42-64 138.6 23
 13. Penicillin 1943 2-28 72.7 27
 14. Pens, Ballpoint 1945 6-27 92.1 22
 15. Records, Phonograph 1887 34-85 372.7 52
 16. Streptomycin 1945 1-27 9.5 27
 17. Styrene 1935 8-36 85.8 29
 18. Tapes, Recording 1947 14-25 159.7 12
 19. Television, Apparatus, Parts 1929 17-43 1355.1 27
 20. Transistors 1948 6-24 266.5 19
 21. Tubes, Cathode Ray 1922 26-50 157.5 25
 Total 499

 a Sales are deflated to 1967 dollars by the Wholesale Price Index, in millions.

 produce as much final output as two units of product i and one unit of product j. As
 computers and ballpoint pens are not exchangeable in this sense, we bring them into

 common units by expressing everything in units of the 1967 "consumption good", so

 that for qi , we shall use product i's sales at t, deflated to 1967 dollars by the
 Wholesale Price Index.

 Gort and Klepper point out that on average there is a rapid decline in the rate at

 which sales and quantity -of output grow with the age of the product, and that their

 growth rates asymptote to zero. The functional form with this property is in eq. (5),

 which, together with equation (2), implies that

 (14) q = [= Ljj = (1 -e Pril) O(j),

 where qi,, are sales in 1967 dollars, L is the population of the US, a = 1/3, and
 ri, t = t - v(i) is the age of product i in year t. Then A.5 and (14) imply

 (15) log qi = 13 log qi,1t- 1 + log(1 - e P i't) - P log(1 - e P(it-1)) + UV(i)t

 The parameters p, p and o-2 can be consistently estimated from equation (15) by

 nonlinear least squares. Since the time series for each product is not too long and

 we assume that p, P3 and o-"2 are the same over products, we shall estimate them by

This content downloaded from 
������������160.217.172.78 on Tue, 28 Jun 2022 10:16:25 UTC������������� 

All use subject to https://about.jstor.org/terms



 16 JOVANOVIC AND LACH

 TABLE 2
 NONLINEAR LEAST SQUARES ESTIMATES

 Parameter a, b Estimate

 P 0.081
 (.1683)

 f3 0.975
 (0.106)

 Au2 0.015

 {p 2 0.311

 a The number of pooled observations is 478.
 Asymptotic standard errors in parentheses.

 The regression includes a constant and 2
 dummies for the pre- and post-war periods.

 pooling the data. The estimates and their asymptotic standard errors are in Table 2.

 4.C. Other Estimates in the Literature: The one point we have in common with

 much other empirical work is our estimate of diffusion speed. The literature on

 diffusion often calculates the statistic "At", defined to be the time it takes a new

 product or process to grow between 10% and 90% diffusion. Our estimate of

 p = 0.081 implies that our At is about 15 years. The most comprehensive study of

 diffusion (of 265 innovations) in the U.S. seems to be the one by Griibler (1991). He
 reports that the largest number of diffusion processes have At's of between 15 and

 30 years, and the sample mean At is 41 years. Our estimate of the speed of diffusion
 is therefore reasonable. Unfortunately, we are unable to check our estimate of fr
 against his sample because his sample does not contain information about the value

 of the inventions.

 4.D. How A was Estimated: The parameter A is estimated from equation (4)
 using aggregate per-capita GNP data to measure y.7 Taking the natural logarithm of

 (4) results in

 (16) logyt=a + At+logXt =1,...,T

 where the constant term a is added to pick up the possibly nonzero mean of log X.

 The assumed stationarity of the { Q,,} process implies that log X is now a zero mean
 stationary variable. The OLS estimator of A in a regression of log y on a constant

 and on time is therefore consistent.

 Further details on the estimation of A: Since log Xt is serially autocorrelated the
 standard formula for the estimator of the variance of the OLS estimator is incorrect.8

 The correct covariance matrix is (W'W)-1 W'VW(W'W)-1, where W is the Tx 2
 matrix of regressors and V is the Tx T autocovariance matrix of log Xt. An
 estimate of V can be obtained since, under the assumption that the model is

 7 The data on annual GNP are from Balke and Gordon (1986) and cover the period 1869-1983.
 Population data are from the Historical Statistics Series and Statistical Abstracts of the U.S.A.

 The OLS estimator is also not efficient since the error is serially correlated and its autocovari-
 ance matrix is also a function of A.
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 INNOVATION AND CYCLES 17

 correct, we know the autocovariance function of log X. This is Ck in equation (8).

 We use the consistent OLS estimator of A and the estimates of p, P3 and q/ from
 the Gort-Klepper data to estimate V and the correct variance of A.9

 Proposition 1 implies that the predicted long-run growth of y is A. The average

 growth rate of per-capita income over the period is 0.01745, which is very close to

 the OLS estimate of 0.01668.10 This result does not constitute a test of the model; it
 merely says that per-capita income is well approximated by an exponential trend.

 Finally, the actual autocovariances in Figure 2 are based on de-trended log

 per-capita income which equals log y, - a' - At; a and A being the OLS estimates of
 a and A in equation (16). Appendix Section C provides further detail on the
 computation of the confidence bands, and on the calculation of the estimates.

 5. OVERVIEW OF THE RESULTS, THEIR LIMITATIONS,

 AND SOME EXTENSIONS

 5.A. Data Limitations and Their Bearing on the Estimates: We make three
 points: First, the Gort-Klepper sample is selected to include only successful prod-
 ucts. This suggests that our observations come from a truncated distribution that

 includes only the right tail, whereas the model deals with all innovations. As far as

 the predicted autocovariance goes, the critical parameter is qi2. Assuming that our
 estimate pertains to the left-truncated distribution of 0, whether ours is an overesti-
 mate or an underestimate of the population coefficient of variation depends on the

 form of the underlying distribution. If this distribution is exponential, our estimate

 of q12 is an underestimate. The same is (somewhat surprisingly) true if the
 distribution is normal (Johnson and Kotz 1970, p. 81)

 Second, being based on BLS figures, the Gort-Klepper sales data do not fully
 control for quality change that is passed on to the consumer and therefore not fully

 reflected in sales. Adjusting for this could make a huge difference to real sales,

 especially for computers (Gordon, 1990). This underestimate of quality change was
 the largest for those products for which sales were the largest, such as computers,

 television, and transistors. On these grounds, oU2, and hence, q, is probably
 underestimated.

 Third, qi could be overestimated for the following reason: several inventions may
 be lumped together and labeled as just one invention. Perhaps computers should

 count as several inventions. Arbitrary classification errors therefore would lead to an

 overestimate of q. These are three reasons why it is hard to assign a standard error
 to our estimate of qi reported in Table 2.

 9 We do not use the standard error of A directly, only in the estimation of confidence intervals.
 Given the estimate of V we also computed a GLS estimator. Note, however, that this estimator is
 still not efficient since it does not estimate V and A jointly. The OLS and GLS estimates of A do not
 differ significantly.

 10 The average growth rate is the OLS estimate of the constant term, A, in a first-differenced
 version of equation (16).
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 18 JOVANOVIC AND LACH

 5.B. Cyclical A: We concluded that the business cycle is shaped not by p, but

 by 4i and ,3, and secondarily by A. This finding is at odds with Schumpeter's notion
 that the business cycle is a wave whose shape depends on the pattern of diffusion.
 How much does our conclusion depend on the assumption that A is fixed? If
 innovations arrive in "bunches", then A is random, and amplitude of the predicted
 GNP series would be higher. Klenow (1994) finds that advertised product introduc-
 tions have an annual coefficient of variation of 0.19. What sort of adjustment would
 this call for? Suppose that this is a good estimate of the coefficient of variation of A.
 Suppose, moreover, that the innovations to A are uncorrelated with the innovations

 to quality of vintages, 0. Then with some algebra one can show that to a first

 approximation the formula for C0 would be unchanged, except that in it the
 appropriate value of q2 would be obtained by adding the number 0.19 to our own
 estimate of q2, so that instead of 0.31, we would have q, 2=0.50. Under this
 interpretation, product innovations explain around 42% of the amplitude of the
 business cycle. Similar adjustments could be make to incorporate the findings of
 Geroski and Walters (1995).

 5.C. Creative Destruction and External Effects: We ignore the possibility that
 (a) some intermediate goods are substitutes, and a new product may displace an old
 one, (in this case a product's sales are an overestimate of the effect that the
 product's introduction has on GNP), or that (b) some intermediate goods are
 complements (the appearance of a product may raise the sales of another). These
 two effects work to bias our results in opposite ways. We hope that to a first-order
 approximation they can be ignored.

 This relates to whether ideas "feed into each other"-and there is no doubt that
 they do. Caballero and Jaffe (1994) allow for both substitution of new technologies
 for old (obsolescence) and complementarity (current ideas breed future ideas).
 Economic historians have emphasized the occasional arrival of major inventions and
 GPTs, such as the steam engine, the diesel engine, the factory system, electricity,
 hybrid seeds, and semiconductors. These GPTs induce a correlation between other
 products that use them in production. A technology that uses a GPT as an input
 may itself be of any vintage, and hence in general the possible arrival of GPT's will
 induce a correlation in the sales of products of different vintages. Assumption A.4.,
 however, allows such a correlation only among products of the same vintage.

 6. CONCLUSION

 This paper has sought to quantify the contribution of innovation to the business
 cycle. We measure technology directly and not as a residual. We use the Gort-
 Klepper data to measure fluctuations in the value of inventions. Although Gort-
 Klepper products are clearly "successes", and hence a biased sample, they are
 biased in terms of their importance. But it is not clear that this sample should

 provide a biased estimate of the two critical macroeconomic parameters: ip, which
 has the dimensions of a coefficient of variation, and /3, which is an autocorrelation.

 We conclude that product innovations can explain fluctuations at lower frequen-
 cies, but they underpredict fluctuations at higher frequencies. Since the diffusion of
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 INNOVATION AND CYCLES 19

 new products is rather persistent in character (13 is high), the predicted autocovari-
 ance function is fairly flat-as in Figure 2. This finding appears to be robust. But we
 are less sure about the intercept of the predicted autocovariance because we are not
 too sure of our estimate of qi: The data may understate quality change of some key
 products, and the BLS may have misclassified or wrongly lumped products together.
 Therefore, further attempts to measure quality differences among distinct new
 products might cause us to revise the predicted amplitude, and perhaps persistence
 as well. Finally, it was a surprise to learn that the speed diffusion plays virtually no
 role in shaping the business cycle.

 We definitely do find a big effect of the speed of diffusion on the level of output.
 A society in which technologies spread quickly will have a big level advantage over
 another in which technologies spread slowly.

 We have used the identifying assumption that a technology shock is completely
 characterized by the new capital good, or equipment, that it induces. Sales of the
 capital good reflect only the direct effect of the shock. They do not capture the
 productivity rise of the user of the new capital good unless the inventor can extract
 all the rent. That is why the next step should be to look at sectoral or industry
 indicators systematically, rather than solely at output effects. In the case of an
 intermediate capital good such as the computer, one could look at what is happen-
 ing in industries and sectors that use computer services. Our approach is to look
 only at sales of computers, but as we remarked earlier, computer sales may be
 underrepresented in aggregate impact relative to other technologies. Other sectoral
 indicators might be used-variables such as inventories, investment, and productiv-
 ity. If we find big sectoral effects (in a major sector), then there must be effects on
 aggregate output. Such sectoral data will tell us more about the effects of particular
 technologies than aggregate data can, and the challenge will be to organize sectoral
 results in a coherent manner that can tell us something precise about the effect that
 technology shocks have on the movement of aggregates.

 APPENDIX

 A: Calculating Ck in Equation (8). Let a - eAT(1 - 1 PT). Then

 CoV(XI+k I XI) = A2 Covf aTOt+k-T t+k df aT0t-T , tdr

 A 2Cov[f aot+k-T t+k dr,f aT ol- T,t-k drj

 A Cov[J as +k Ot s, t-k aT at- T, t-k dr

 The second equality follows because Ot-Tt = PkTl t-k + {, where, by A.4.,
 { is independent of each other 0 under the second integral after the first
 equality, and the third equality follows after changing variables in the first integral
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 20 JOVANOVIC AND LACH

 from r to s = r- k, and factoring out 13k from the second integral. Now

 C?V0t-sst-k' Ot-r,t-k)= 2 if s = I, and zero otherwise. Hence the first integral
 over the region s E [ k, 0] is uncorrelated with the second integral, and

 Cov[XtXt+k] = A2pkk 2f+ as+k as ds = p )2_1 + _
 o kasds=2(A+ p)(2A+ p) (16P )

 Moreover, for any two variables u and v, Cov[log(u), log(v)] Cov(u, v)/E(u)E(v),
 which implies that 42 2/[E(0)]2. This approximation underlies the expression
 in equation (8).

 A second way to obtain the above expression for the covariance is to first use A.4.

 to justify changing the limits of the integral defining Xt+k from [0, oo) to [k, oc), then
 change the variable in the first integral from X to s = X-- k.

 B: Proof of Proposition 2. By "clockwise rotation" of, say Ck, in response to a
 parameter, say A, we mean that dCk/dA > 0 for all k sufficiently small, and

 dCk/dA <0 for all k sufficiently large. The derivations are straightforward, but
 signing some of them requires that the inequality 1 + x < ex for x 0 0 be invoked.

 The only claim that is proved in a different way is claim (iv). The strategy here is

 to let f(z) log(z), so that k* =f(l + p/B)/p, where B p/[A - log( 3)]. Then

 dk*/dp = [-f(1 + B) + Bf'(1 + B)]/p2.

 By Taylor's theorem with remainder,

 f(l) =f(l +B) +f'(1 +B)(-B) + [f"(x)/2]B2,

 for some x E [1, 1 + B]. Substituting for f into the previous equation, and observing
 that f(l) = 0 while f" < 0 proves the claim.

 C: Computation of Confidence Intervals. Confidence intervals of the predicted

 autocovariances are computed in the standard way using an asymptotic approxima-

 tion. Let 8 = (A, p, /3, i/i) and let "hats" denote estimated values. The variance of
 Ck(8) is obtained from the variance of the linear Taylor expansion of Ck(8) around
 B. This results in an estimated variance given by g(b'f5g(8), where g(8) is the
 gradient of Ck(8) evaluated at 8, and Q is the 4 x 4 estimated covariance matrix
 of B.

 Q is specified as follows. Its diagonal elements are taken from the second column

 of Table 2 and from the assumption that Fi/ has zero variance which means that, on
 this account, the reported bands are tighter than they should be. The only nonzero
 off-diagonal element is the covariance between the estimated p and p that comes
 out from the estimation procedure; the other covariances are set to zero.

 Under these assumptions, the estimated variance of Ck(8) is,

 A var(Ck(8)) =Var( A)(dCk( 8)/dA) +Var( p)(dCk(8)/dp)

 + Var( 8 )(dCk( )/dp) + Cov( 3, i )(dCk( )/aP)(dCk( )/ap),

 the partial derivatives being evaluated at the point estimates.
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 INNOVATION AND CYCLES 21

 The confidence interval for the predicted autocovariance is based on the use of
 the normal distribution as an approximation to the true distribution of Ck(8). The
 95% confidence interval is therefore,

 (C.1) Ck() + 1.96 [A var(Ck8)

 The "actual" autocovariances of de-trended log yt are estimated in the standard
 way (e.g., equation (5.3.13) in Priestley, 1981). We also build confidence intervals
 around them, having the same form as those appearing in equation (C.1), but using
 the exact variance of these autocovariances under the assumption of normally
 distributed de-trended log yt (see eq. (5.3.23) in Priestley, 1981).

 Further Notes on the Estimation Procedure: The objective is to find values of p,
 /3 and y that minimize

 21

 p( P./, y) E E [log qi. -1 log qi,_ - log(1 -e PTi)
 i-1 1T

 +f3 log(l - e-PTi-I) _ziy]l

 where zit are product and period specific dummies. The estimation procedure is as
 follows: Choose values of /3 and p over the intervals [-1,11 and [0.01, 1.5],
 respectively, evaluate the regressors involving p and /3 and compute the sum of
 squared errors associated with the OLS estimator of y, S( p, 3, y( p, /3 )). Select the
 values of p and P3 that minimize the latter concentrated sum of squared errors.

 Asymptotic standard errors are estimated and computed in the standard way:

 Acov = u2Q(g'g)'- where g is the gradient of the right-hand side of (15) with zy
 added to the end, g = (go, gp, z),

 gP = log qi 1 - log(1 - e

 repr -r(T- 1)e-P(T-

 g= 1-e -PT 1 -e-P(T-)

 and where o)u2 is estimated by the minimized value of S( p, /, y( p, 8)), divided by
 the number of observations. The gradient is evaluated at the point estimates of p
 and 83. The covariance of (,3, p) is the 2 x 2 top-left matrix of Acov.

 REFERENCES

 ANDOLFATrO, D. AND G. MACDONALD, "Endogenous Technological Change, Growth, and Aggre-
 gate Fluctuations," Unpublished paper, University of Rochester, February 1994.

 BALKE, N. AND R. GORDON, "Appendix," in R. Gordon, The American Business Cycle (Chicago:
 University of Chicago Press, 1986).

 BOUCEKKINE, R., M. GERMAIN AND O. LICANDRO, "Creative Destruction and Business Cycles,"
 Working paper No. 95-16, Universidad Carlos III, May 1995.

This content downloaded from 
������������160.217.172.78 on Tue, 28 Jun 2022 10:16:25 UTC������������� 

All use subject to https://about.jstor.org/terms



 22 JOVANOVIC AND LACH

 BRESNAHAN, T. AND M. TRAJTENBERG, "General Purpose Technologies: Engines of Growth?"

 Journal of Econometrics 65 (1995): 83-108.
 CABALLERO, R. AND M. HAMMOUR, "The Cleansing Effect of Recessions," American Economic

 Review 84 (1994): 1350-1364.

 AND A. JAFFE, "How High Are the Giants' Shoulders: An Empirical Assessment of
 Knowledge Spillovers and Creative Destruction in a Model of Economic Growth,"

 in 0. Blanchard and S. Fischer, eds., NBER Macroeconomics Annual, (Cambridge, MA: MIT
 Press 1993, pp. 15-73).

 CHARI, V. V. AND H. HoPENHAYN, "Vintage Human Capital, Growth, and the Diffusion of New
 Technology," Journal of Political Economy 99 (1991): 1142-65.

 DIEBOLD, F., L. OHANIAN AND J. BERKOWITZ, "Dynamic Equilibrium Economies: A Framework for

 Comparing Models and Data", NBER Technical Working paper No. 174, February 1995.
 AND A. SENHADJI, "Deterministic vs. Stochastic Trend in U.S. GNP, Yet Again," Unpub-

 lished paper, University of Pennsylvania, November 1995.
 GEROSKI, P. AND C. WALTERS, "Innovative Activity over the Business Cycle," Economic Journal 105

 (1995): 916-928.
 GORDON, R., The Measurement of Durable Goods Prices, NBER, Chicago: University of Chicago

 Press, 1990.

 GORT, M. AND S. KLEPPER, "Time Paths in the Diffusion of Product Innovations," Economic Journal,
 92 (1982): 630-653.

 GREENWOOD, J., Z. HERCOWITZ AND P. KRUSELL, "Macroeconomic Implications of Investment-
 Specific Technological Change," Working Paper No. 6-94, The Sackler Institute of Economic
 Studies, Tel Aviv University, March 1994.

 GRILICHES, Z. "Hybrid Corn: An Exploration in the Economics of Technological Change," Econo-
 metrica 25 (1957): 501-22.

 GROBLER, A., "Diffusion: Long Term Patterns and Discontinuities," Technological Forecasting and
 Social Change 39 (1991): 159-80.

 JAFFE, A. AND M. TRAJTENBERG, "Flows of Knowledge from Universities and Federal Labs,"
 Unpublished paper, Brandeis University, 1995.

 JOHANSEN, L. "Substitution versus Fixed Production Coefficients in the Theory of Economic
 Growth," Econometrica 27 (1959): 157-176.

 JOHNSON, N. AND S. KOTZ Distributions in Statistics (New York: Wiley 1970).
 JOVANOVIC, B. "Micro Shocks and Aggregate Risk" Quarterly Journal of Economics (1987): 395-409.

 AND S. LACH, "Entry, Exit, and Diffusion with Learning by Doing," American Economic
 Review 79, no. 4 (1989): 690-99.

 AND R. ROB, "Long Waves and Short Waves: Growth through Intensive and Extensive

 Search," Econometrica 58, no. 6 (1990): 1391-1409.
 AND G. MAcDONALD, "Competitive Diffusion," Journal of Political Economy 102, no. 1

 (1994): 24-52.
 KLEINKNECHT, A. Innovation Patterns in Crisis and Prosperity: Schumpeter's Long Cycle Reconsidered

 (London: MacMillan, 1987).
 KLENOW, P., "New Product Introductions," Unpublished paper, Graduate School of Business,

 University of Chicago, January 1994.
 Lpim, M. AND L. REICHLIN, "Diffusion of Technical Change and the Identification of the Trend

 Component in Real GNP," Review of Economic Studies, 61 (1994): 19-30.
 PREScoTrr, E., "Theory Ahead of Measurement in Business Cycle Research," Carnegie Rochester

 Conference on Public Policy 25 (1986): 11-44.
 PRIESTLEY, M. Spectral Analysis and Time Series (New York: Academic Press 1981).
 ROMER, P. "Crazy Explanations for the Productivity Slowdown," NBER Macroeconomics Annual

 (1987).
 SALTER, W. E. G., Productivity and Technical Change (New York: Cambridge University Press, 1960).
 SCHEINKMAN, J. AND M. WOODFORD "Self-Organized Criticality and Economic Fluctuations," Amen-

 can Economic Review (Papers and Proceedings) 84 (1994): 417-421.
 SOLOW, R. "Investment and Technical Progress," in K. Arrow, S. Karlin and P. Suppes, eds.,

 Mathematical Methods in the Social Sciences (Stanford: Stanford University Press, 1959).

This content downloaded from 
������������160.217.172.78 on Tue, 28 Jun 2022 10:16:25 UTC������������� 

All use subject to https://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15
	image 16
	image 17
	image 18
	image 19
	image 20

	Issue Table of Contents
	International Economic Review, Vol. 38, No. 1, Feb., 1997
	Front Matter
	Editorial [p.  1]
	Product Innovation and the Business Cycle [pp.  3 - 22]
	Keeping People Out: Income Distribution, Zoning, and the Quality of Public Education [pp.  23 - 42]
	Comparative Statics of Contests and Rent-Seeking Games [pp.  43 - 59]
	A Theory of on-the-Job Learning [pp.  61 - 81]
	Estimation and Inference for Normative Inequality Indices [pp.  83 - 96]
	Illegal Immigration and Resource Allocation [pp.  97 - 117]
	Risk and Return: An Experimental Analysis [pp.  119 - 149]
	Exact Nonparametric Tests of Orthogonality and Random Walk in the Presence of a Drift Parameter [pp.  151 - 173]
	The Optimal Decision Rule for Fixed-Size Committees in Dichotomous Choice Situations: The General Result [pp.  175 - 186]
	Strategic Trade Policy under Uncertainty: Sufficient Conditions for the Optimality of Ad Valorem, Specific and Quadratic Trade Taxes [pp.  187 - 203]
	On the Existence of Balanced Growth Equilibrium [pp.  205 - 224]
	Turnpike Theorems in Nonconvex Nonstationary Environments [pp.  225 - 248]
	The Role of Monetary Policy in Eliminating Nonconvergent Dynamic Paths [pp.  249 - 261]
	Publications Received [pp.  263 - 265]
	Back Matter



